A Control-Oriented Coverage Metric and its Evaluation for Hardware Designs

نویسندگان

  • Shireesh Verma
  • G. Harris
چکیده

Problem statement: Dynamic verification, the use of simulation to determine design correctness, is widely used due to its tractability for large hardware designs. A serious limitation of dynamic techniques is the difficulty in determining whether or not a test sequence is sufficient to detect all likely design errors. Coverage metrics are used to address this problem by providing a set of goals to be achieved during the simulation process; if all coverage goals are satisfied then the test sequence is assumed to be complete. Coverage metrics hence evaluate the ability of a test sequence to detect design errors and are essential to the verification process. A key source of difficulty in determining error detection is that the control-flow path traversed in the presence of an error cannot be determined. This problem becomes particularly difficult in case of typical industrial designs involving interaction of control flow paths between concurrent processes. Error detection can only be accurately determined by exploring the set of all control-flow paths, which may be traversed as a result of an error. Also, there is no technique to identify a correlation between coverage metrics and hardware design quality. Approach: We present a coverage metric that determined the propagation of error effects along all possible erroneous control-flow paths across processes. The complexity of exploring multiple controlflow paths was greatly alleviated by heuristically pruning infeasible control-flow paths using the algorithm that we present. We also presented a technique to evaluate coverage metric by examining its ability to ensure the detection of real design errors. We injected errors in the design to correlate their detection with the coverage computed by our metric. Results: Our coverage metric although analyzed all control-flow paths it pruned the infeasible ones and eliminated them from coverage consideration, hence reducing the complexity of generating tests meant to execute them. The metric also correlated better with detection of design errors than some well-studied metrics do. Conclusion: The proposed coverage metric provided high accuracy in measurement of coverage in designs that contain complex control-flow with concurrent processes. It is superior at detecting design error when compared with the metrics it was compared with.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observability Statement Coverage Based on Dynamic Factored Use-Definition Chains for Functional Verification

Simulation is still the primary verification method for integrated circuit designs, and coverage evaluation is indispensable for it on account of its incompleteness. As the functional complexity of modern designs is increasing dramatically, it is necessary to take observability into consideration for coverage metrics. In this paper we extend factored use-definition chains (FUD chains), a mature...

متن کامل

Verifying Complex Interaction between Hardware Processes

Problem statement: Verification of correct functionality of semiconductor devices has been a challenging problem. Given the device fabrication cost, it is critical to verify the expected functionality using simulations of executable device models before a device manufactured. However, typical industrial scale devices today involve large number of interactions between their components. Complexit...

متن کامل

OCCOM: Efficient Computation of Observability-Based Code Coverage Met&

Functional simulation is still the primary workhorse for verifying the functional correctness of hardware designs. Functional verification is necessarily incomplete because it is not computationally feasible to exhaustively simulate designs. It is important therefore to quantitatively measure the degree of verification coverage of the design. Coverage metrics proposed for measuring the extent o...

متن کامل

Model A Model B c F 1 0

| Functional simulation is still the primary workhorse for verifying the functional correctness of hardware designs. Functional veriication is necessarily incomplete because it is not computationally feasible to exhaustively simulate designs. It is important therefore to quantitatively measure the degree of veriication coverage of the design. Coverage metrics proposed for measuring the extent o...

متن کامل

Review of ranked-based and unranked-based metrics for determining the effectiveness of search engines

Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009